
Go to index of my Pike pages

The Unofficial Pike Programming Language FAQ

Contents
I. About this document

II. General questions
III. Basics of Pike programming
IV. Advanced Pike programming
V. Pike’s module library

VI. Credits

About this document
This document was compiled and is copyright (2001) by Robert J. Budzynski.

This is a completely unofficial FAQ list for the Pike programming language, an interpreted (in
its current implementation), object-oriented language created by Fredrik Hübinette and made
available under the GNU General Public License by Roxen Internet Software (of Sweden),
which sponsors its development. This document is unofficial in the sense that its editor has
no relationship, business or other, with Roxen Internet Software (RIS) nor with its staff, it has
not been reviewed nor approved by RIS and does not comprise part of Pike nor of
documentation authored at and provided by RIS. While it is my intent to provide accurate and
up to date information, there is no warranty: this document is a volunteer effort, and a work in
progress, and it may well fall out of sync with the development of Pike due to limitations of
time and knowledge on my part.

Permission is hereby granted to copy and redistribute this document in whole or in part by
any means, provided that its origins are not misrepresented.

This is a work in progress. You are viewing a severely incomplete, early version. When
this document becomes a little more complete and (hopefully) useful, the above notice
will be made more precise, though it will not change as to intent. All contributions,
new questions as well as new or improved answers, are very much welcome, and will
be given due credit.

I will try to keep this information up to date for the current "stable" Pike branch (7.2 at the
time of this writing); most of it applies as well to 7.0.x. With 0.6x (provided with Roxen 1.3),
you’re pretty much on your own, look up the docs appropriate to that version.

1

http://localhost/~rjb/Pike/index.html

General questions
1. What is Pike?

Pike is an object-oriented, interpreted programming language with a syntax similar to
Java and C, high-level data types, automatic memory management, highly efficient
string handling, easy to use APIs for network and database programming, and several
years of active development behind it. In the current implementation, Pike code is
compiled at runtime to bytecode which is interpreted by a virtual machine. Pike’s
implementation is heavily optimized, and both the language and its libraries are under
continuing development; its performance compares favorably to all scripting languages
on the market.

2. What OS’s does Pike run on?

Pike is best supported on Solaris and Linux, but it runs on a wide variety of Unix or
Unix-like operating systems. With some limitations (hearsay as far as this author is
concerned) it can also be made to work on Windows NT (Win32). Work appears to be
under way on supporting Win64 as well.

3. What is Pike good for (pros and cons)?

Pike is great for mostly any programming task, but is at its best when you are able to
make good use of its high-level datatypes and good string-processing and network I/O
facilities. It is probably not optimal for low-level stuff, especially involving much
bit-twiddling and byte-by-byte processing. I haven’t heard of many device drivers written
in Pike ;-)

A somewhat subjective overview:
PROS

easy to learn and use
well-tested in the implementation of a major application (Roxen web server),
development sponsored by a stable company, won’t go away anytime soon
free (as in GPL)
familiar C-like syntax for expressions and control statements
automatic memory management
high-level datatypes, including mappings (associative arrays), classes and objects
clean, no-nonsense OOP model, including multiple inheritance and operator
overloading (but you can mostly ignore OOP if you want)
exception handling
no compile/link/run cycle, source code is compiled into bytecode and interpreted at
runtime
dynamic loading of C modules compiled into shared libs
good and efficient string handling
a well-designed module system that both organizes Pike’s standard library and can
be easily used in your own projects
excellent handling of network I/O, with an easy to use API
convenient built-in support for event-driven programming via a native Pike event
loop
many useful library modules in the standard distribution

2

great performance, beats most other interpreted languages at most tasks
CONS

Pike is an "implementation-defined" language, lacks a formal definition or standard
language features and library APIs can and do change in new releases, without
much notice
official documentation is not up to date nor complete
no native code compilers (yet)
no facilities for storing or distributing byte-compiled code
no IDE or source-level debugger (you probably won’t miss the former much though,
YMMV)
exception system is not complete yet, and not yet as useful as it might be
not optimized for numeric processing
much smaller user community than (say) Perl or Python’s (the most comparable
languages)
commercial backing, while it exists, is not as powerful as Java’s

4. Does Pike support databases, graphics, GUI programming, strong crypto, ...

Yes, and quite a bit more:

Supported RDBMS’s include Mysql, mSQL, Postgres and Oracle. There is also an
ODBC interface;
The Image module supports a wide variety of operations on raster graphics in all
common image formats;
GUI programming for the X Window System is supported through an interface to the
popular GTK library, including Gnome extensions; there is also an interface to the
OpenGL API, including GLUT;
Pike’s Crypto Toolkit (now fully included in the standard distribution) supports some
of the most popular block and stream ciphers (DES, IDEA, and CAST128; RC4),
cryptographic hash functions (MD5 and SHA1), and the RSA public key algorithm;
Decoding and encoding of MIME messages is supported by a dedicated module;
The Gz module gives you access to zlib data (de)compression;
The Calendar module provides a sophisticated set of classes and methods for
datetime calculations;
Several more specialized modules are in development.

5. Who uses Pike and for what?

The major Pike application is Roxen Internet Software’s Roxen Web Server (GPL), and
its proprietary extensions marketed under the name Roxen Platform. For more info, see
their website. Roxen is implemented almost entirely in Pike, and is remarkably efficient
and stable. It is also highly extensible, via user-supplied modules written in Pike. In fact,
most of the Pike programming being done outside of RIS is probably in-house
development of Roxen modules by the webserver’s users.

Another major project is Caudium, a fork of Roxen based on a version currently being
phased out by RIS, but with significant new developments.

One project I don’t know much about is GIME; they state they will be doing their
development in Pike, but no new "What’s New" items seem to have appeared on their
website for quite a while.

3

http://www.roxen.com/
http://caudium.net/
http://www.gime.org/

Pike is, however, as I try to argue here, suitable for much more than a webserver
extension language, and one of the top purposes of this document is to alert more
programmers to its advantages.

Some sample code can be found on the Pike Community website; beware that many of
the "hacks" are quite old and will not work under current versions of Pike without
modification. Unfortunately, RIS is phasing out this website, and it has ceased to be updated
for some time now. Hopefully, whatever is useful of its content will be incorporated into the
Roxen Community site.

6. How do I get Pike?

If you decide you are serious about learning and using Pike, you most certainly want to
get a recent version from RIS’s public CVS repository. This isn’t hard to do at all; if you don’t
have a CVS client on your system yet, and you are running any halfway-decent Linux
distribution, just install CVS from your distribution’s packages (they all provide it). I’m certain
it’s just as easy with any of the free BSD’s. Check on Roxen Community for how to
proceed from there. If you have a decent net connection, the whole process won’t take more
than a few minutes, plus the time to build Pike from source (half an hour or so on today’s
machines).

Building Pike from source is quite straightforward in most cases: note that to benefit from
most of the modules that interface with external C code, you need to have installed the
development versions of the corresponding C libs (such as libmysqlclient, GTK, the
Gnome libs, etc.).

The benefits of doing this are that you’ll be sure you have an up to date Pike, including
all current bugfixes and feature enhancements; compiling it from source will allow you to
have support for those C libraries (and their versions) that are available on your system,
which Pike can support.

A possible downside is that, since Pike’s development is proceeding at a rather fast rate,
if you stick to the bleeding edge you will surely sooner or later run into some incompatibilities
that will break code you already wrote. A safer compromise may be to stick to the "stable"
branch of Pike (7.2 at the time of this writing), but update it regularly to benefit from bugfixes.

Of course, the branch in current development (7.3 nowadays) is also available for your
perusal, should you feel adventurous.

A slightly easier alternative is to install Pike from your Linux distribution. If you are
running Debian Gnu/Linux (as you should be ;-), Pike and Roxen are available in the main
section (and are only an apt-get away); however, it may be worthwhile to check out
Caudium’s website for more up to date Pike packages, including extra modules
developed by the Caudium Group and an apt’able repository of deb’s.

From Martin Nilsson:
You can download pike for Win32 by downloading Roxen Webserver for Win32. It does
not include GL, GTK and some of the "heavy" stuff that would add too much to the size of the
WebServer distributions. We have at least once succeded in compiling pike on all the
systems listed on this Roxen Community page.

4

http://pike-community.org/
http://community.roxen.com/
http://community.roxen.com/developers/cvs/anoncvs.html
http://caudium.net/
http://community.roxen.com/developers/autobuild/pike72.html

UPDATE: the latest stable source tarball of Pike should be at
ftp://ftp.roxen.com/pub/pike/latest-stable/, last I looked this was version 7.2.239, and
binary packages for RedHat Linux, Solaris and NT were there as well.

7. Is there an IDE for Pike?

No, currently there is none. However, Pike is so much easier and cleaner then many
other languages that the only thing you are likely to miss is a class browser to ease the
exploration of the many available (and somewhat poorly documented) library modules. Pike’s
interactive mode (known as Hilfe, and launched by invoking pike with no filename
arguments), is very helpful though (see below).

For editing Pike code with syntax highlighting you might use the pike.el module for
(X)Emacs, which is provided in the Pike distribution.

8. Is it or will it be possible to compile Pike to native code?

Not anytime soon. However, to quote the ANNOUNCE file from the current distribution:

Pike is still under development and the goal is to incorporate those in future
versions.
- No Pike native compiler or debugger available

Read whatever you like into this...

However, if performance is your concern, you are likely to find that interpreted Pike
performs well enough for most of your needs. The overhead of runtime bytecode
compilation usually matters only for medium to large sized programs that need to be
launched often; for short scripts, startup time is negligible, while for a long-running
application (such as a webserver) it’s unimportant, as you don’t need to restart it often.

9. Where do I find more information?

The Pike homepage at RIS is your main starting point.

To get started, an excellent resource on the "Pike way" is the Pike 7.0 tutorial.

There are several versions of the basic Pike Reference Manual floating around; it is hard
to determine which one might be the most up to date at a given time. Places to check
are the docs section of the Pike home page, David Hedbor’s page of Pike
documentation, and of course Fredrik Hübinette’s Pike page.

You will almost certainly want to subscribe to the Pike mailing list, if you plan any serious
development in Pike.

Basics of Pike programming
1. What are Pike’s datatypes?

Pike has a powerful and clean type system, which provides you with a variety of
high-level data types, plus the benefits of compile and run-time type checking. There are
arrays, mappings (a.k.a. associative arrays or dictionaries in other languages), classes,

5

ftp://ftp.roxen.com/pub/pike/latest-stable/
http://pike.roxen.com/
http://www.roxen.com/
http://docs.roxen.com/pike/7.0/index.html
http://pike.roxen.com/documentation/
http://david.hedbor.org/
http://david.hedbor.org/pikeman/
http://david.hedbor.org/pikeman/
http://fredrik.hubbe.net/
http://fredrik.hubbe.net/pike/

objects, and functions are also a first-class data type.

For a start, variables in Pike must be declared, and some type information must be given
in the declaration, e.g.:

int counter=1;
object foo;
object(Stdio.File) outfile;
Stdio.FILE infile;
function(int, string|void: mapping(string:string)) fun;
int|float x;
mixed whatever;

are all valid variable declarations in Pike (object(Classname) foo; and
Classname foo; are equivalent). Note that you can declare a variable as a sort of
"union" (e.g.int|float), specify (optionally) argument and return types for a function,
index and value types for a mapping; declare an object as an instance of a specific
class, etc.

You may also forfeit (most) compile-time type checking by declaring your variables as
mixed, i.e. any type at all. This is not usually a good idea (although it works), except
when you want to have a sort of function overloading: you can define functions that
check the type of their arguments at runtime, and take different actions accordingly.

In more detail: Pike has two sorts of datatypes, the basic types (int, float,
string) and the pointer types (array, mapping, multiset, function,
program, object). Variables are passed by value in function calls, but the semantics
of this is slightly different depending on whether you are dealing with a basic or pointer
type: in the latter case, the "value" is in fact a "pointer" to the actual data object, which is
mutable, i.e. can be modified "in place". For the basic types, although behind the
scenes, they are also represented by references to complex data objects, these objects
themselves are immutable (this includes strings, which are shared).

This should be explained a little better, and illustrated with one or two examples.

You can also declare named constants, as in

constant PI = 3.141593;

here you do not need to specify a type, since the assigned value should be available to
the interpreter at the time it compiles your class, meaning it can figure out its type on its
own. Named constants are class members just like variables and methods, and are also
public by default.

2. OOP features in Pike?

Pike’s OO features are quite elegant and user-friendly. Learn to take advantage them to
organize your code, you’ll soon agree that OOP can really make sense, even for rather
small projects. The discussion of Pike OOP in the reference manual is actually quite
good and highly recommended; anyway, here’s a quick recap.

6

For a start, every file of Pike code you wrote defines a class. A class is simply a data
object, of type program to Pike’s type system, which you use as a container for other
data objects; these can be anything at all (that Pike supports), including variables of both
basic and pointer types; other classes too.

Pike actually uses two keywords referring to classes, in different contexts: the datatype
is program, as already said; and the class keyword is used when you define a class
inside another one, i.e. you don’t have to put each class definition in a separate file.

In particular, class members can and usually do include functions, which can directly
access variables declared at top level of the same class (actually, of any enclosing classes
as well), in addition to any arguments that are passed in the function call. But no function
definitions (method definitions in OO lingo) are actually required in a class, you can just as
well define classes you will use as mere containers for data (like structs or record types in
other languages).

Once a class is defined, you can pass it around just like like any other data type, but you
can’t yet do anything useful with the stuff inside it (data members and methods). To do some
work with it, you must first clone an object of this class (instantiate, for the more
sophisticated). Usually this is done by calling the class as if it were a function, and storing the
return value in a variable of type object (more specific typing is usually useful, as
discussed elsewhere). What this does is it initializes all class variables, and makes the
methods available for calling. You can then access the object’s members (up to limitations
imposed by type modifiers, if you cared to use any), via the indexing operator.

In other words, all member identifiers are by default public, and are available to any
code that holds a handle to an object cloned from the given class. In practice, this usually
looks somewhat like

Foo bar = Foo(arg1, arg2);
gazonk = bar->gurg(whatever);
bar->crap = zonk();

etc. Here the first line clones an object of class Foo, passing arg1, arg2 to the class
constructor (more about this in a minute), and stores it in a variable declared as an
object of type Foo; the second line calls a member function of this object (and stores the
result); and the third stores the return value of some function call in a member variable of
bar.

To have something interesting happen when an object of your class is cloned, you must
define in it a constructor, called create(). It should return void, and can take any
arguments you declare for it; in the function’s body, you can do mostly whatever you
please. Your constructor will be called automatically whenever an object of your class is
cloned. Of course, standard library classes come with their ready-made constructors.

When you’re done with an object and want to get rid of it, you can just destroy it by
calling destruct(foo);. From there on, all references to this object (if any) become
invalid. If you need to do some cleanup when an object is destroyed, define in your class
a void destroy() method -- this is usually necessary only when the object
manipulates some external resources.

7

TBC

3. The preprocessor -- HOWTO?

Pike’s preprocessor works pretty much the same as a C preprocessor -- allowing you to
use directives such as #if, #ifdef, #define and #include in the source code for
your Pike programs. #include <file.h> by default searches for file.h in Pike’s
systemwide include directory; you can find out where that is by executing pike
--show-paths. You will seldom, if ever, need to use this directive.

NOTE: do not confuse Pike include files with C include files that are also installed by
Pike, and that are used when compiling Pike modules written in C.

One thing that makes using the preprocessor in Pike different is that Pike scripts are
compiled at runtime. A way to exploit this is by using a file of #defines in lieu of a
runtime config file for your app. This may not be very elegant, but it’s a boon for those who
(like me) are too lazy to write a ‘real’ config file parser.

Some bonus features of Pike’s preprocessor:

#! causes the remainder of the line to be ignored (for compatibility with Unix #!
script magic)
#"Put some string here" extends the string literal syntax by allowing strings
with (real) newlines
#string "file.txt" inserts the contents of file.txt at the directive’s
position, as a (quoted and properly escaped) string literal
You can run the preprocesor on any string value at your program’s runtime by
calling cpp().
There is a preprocessor directive #pike that defines which version of pike you want
to emulate. This should make your scripts invulnerable to pike updates. Example:

#pike 7.0
// Code that should be run as pike 7.0
#pike 7.2
// Here you came back a year later and
// wanted to use
// a pike 7.2 feature
#pike 7.0
// The rest of the program.

(thanks again to Martin Nilsson).
There is a #charset directive that allows you to specify in what character set the
source file is written; a large number of charsets are supported, including all the
iso8859-*, UTF-8 and Unicode (where is a list?).

The following preprocessor symbols are predefined in Pike 7.0:

8

macro_name expansion

__LINE__ Current line number (starts on 1)

__FILE__ Current filename

__DATE__ Current date "MMM dd yyyy"

__TIME__ Current time "hh:mm:ss"

__dumpdef(X) Dump definition of a #define (unreliable)

__PIKE__ 1

__VERSION__ major.minor

__MAJOR__ major

__MINOR__ minor

__BUILD__ build

__AUTO_BIGNUM__ 1 if bignums are enabled.

__NT__ 1 if WIN32/WIN64.

__amigaos__ 1 if AmigaOS.

In Pike 7.2 and 7.3 the following preprocessor symbols were added/changed:

macro_name expansion

__VERSION__ Current version major.minor (#pike)

__MAJOR__ Current version major (#pike)

__MINOR__ Current version minor (#pike)

__REAL_VERSION__ major.minor

__REAL_MAJOR__ major

__REAL_MINOR__ minor

__REAL_BUILD__ build (Same as __BUILD__ for symmetry)

Thanks to Henrik Grubbström for the above.

4. How do I make my script directly executable?

On a Unix(-like) system, any Pike script that defines a main() function can be treated
as an executable file, provided that the first line of the script starts with

#!/usr/local/bin/pike

9

or whatever is the full path to the Pike executable installed on your system. This works
just like for e.g. shell scripts and many other interpreters. The Pike interpreter will ignore this
line. I’ve heard of Unix systems that don’t obey this convention -- I think you can find them
somewhere in the Retrocomputing Museum ;-)

One often-used trick is to start a script with a line

#!/usr/bin/env pike

instead of the one above; this works around the requirement that the exact full path to
the Pike executable be given in the "magic" line, by causing the current value of PATH to
be searched (see the manpage for env(1)).

Trivia: a few times I tried by mistake to execute a Pike script that was missing this line.
Funny things happened, like my X display getting strangely messed up. It turned out that
when told to execute an ASCII text file with no #! magic, my Linux system tries to run it
as a shell (sh) script (or maybe that’s a bash feature). Well, the first nonempty line in
that script was like import "Foo";. Look up the manpage for import to solve the
riddle (it’s part of the ImageMagick suite). Killing the script and typing xrefresh at the
prompt gets things back to normal.

5. Can I (or should I) spread my program across multiple files?
6. Does Pike have an interactive mode?

Yes, it’s called ‘Hilfe’; according to Martin Nilsson,

Hilfe stands for "Hubbes Incremental Lpc FrontEnd". Help in Swedish is "Hjälp".

(Hilfe happens to be also German for ‘help’, and Pike is a descendant of the older LPC
language); it is launched when you invoke Pike with no filename arguments. Once in
Hilfe, type ‘help’ for a brief summary of available commands. Other than those, you can
type in mostly any Pike expression or statement, for immediate evaluation. Input can be
continued across multiple lines, line editing is provided via the readline library (same
as used in bash), though with a few glitches.

7. I made my script return a negative error code from main(), and now it won’t exit
until I kill it?

This is correct: a negative return value from main() tells Pike’s master program that it
should enter asynchronous mode, i.e. the event-processing loop. For this to be useful,
you should have first set up some callouts and/or callbacks. Callouts are functions to be
called in (approximately) a specified time, while callbacks will be called in response to
some external event (data becoming available on an input stream, button pressed on a
GUI widget, etc.). To learn how to do this, investigate for a start
Stdio.File.set_nonblocking() and call_out().

BTW a negative return code is not meaningful in most OS’s: AFAIK the error code
returned from a program is unsigned char (0-255).

8. What are Pike’s file I/O facilities?

10

The Stdio module.

Classes Stdio.File, Stdio.FILE.

TBC

9. What are Pike’s network I/O facilities?

The Stdio.File class has easy to use methods for handling client socket connections,
it’s about as simple as

Stdio.File fd = Stdio.File();
fd->connect("pike.roxen.com", 80);
fd->write("GET / HTTP/1.0\r\n\r\n");
string reply = fd->read();

up to error checking etc. of course. To listen on a port, there’s the Stdio.Port class,
and there’s a Stdio.UDP for (surprize) UDP communication. The details are pretty well
covered in the documentation.

10. Does Pike support C++/iostream style I/O?

Not that I know of. It wouldn’t probably be hard to emulate most of those features in
Pike, but it seems nobody has bothered.

11. What are the facilities for processing strings?

Builtin string functions and operators.

The String module.

The Regexp module.

TBC

12. How do I access OS/Posix facilities?

Interfaces to these are implemented mostly as builtin Pike functions, look for them in the
mapping returned by all_constants(). Most of what you may need is there, e.g.
alarm(), chroot(), getpid(), getpwnam(), signal(), uname(), ... Of course
some may be missing if you’re running Pike on (say) a MS Windows system.

13. Does Pike have multithreading?

Yes, if your OS supports it (well enough).

TBC.

14. How do I get started with database programming in Pike?

If by ‘database programming’ you mean working with an RDBMS (such as Mysql or
Oracle), first learn a little about SQL -- that part you won’t find here (I might insert a few
links sometime).

11

OK, now that you’ve done that: Pike has a generic SQL module, called (appropriately)
Sql, which is the preferred interface. Most of the real work is done by methods
implemented in RDBMS-specific modules, such as Oracle, Mysql or Sybase. Which
ones you will actually have support for depends on the (DB-vendor-provided) client libraries
you actually have on your system, as mentioned elsewhere.

An easy way to initialize a connection to your database is by cloning an instance of
Sql.sql, via a call such as

object db = Sql.sql("mysql://dbhost", database, user,
password);

or even

object db = Sql.sql("mysql://user:password@dbhost/database");

if you find this more convenient (substitute ‘oracle’ or whatever for ‘mysql’ if appropriate),
and now you can use methods in db, like

array(mapping(string:string)) reply = db->query(query_string);

here query_string holds your SQL statement, and reply will hold the rows of the
table returned by your query, as mappings keyed by column name.

If you expect your query might return a huge amount of data, consider using the
big_query() method instead, and fetching the result rows one by one from the
object(Sql.result) returned by this method.

Much of the description of the Mysql module to be found in the Pike reference carries
over to the generic Sql module. Yes, it is a long-standing deficiency of the reference
that it describes Mysql and not the generic interface. When you should need
DBMS-specific functions not provided by the generic Sql, they are available as methods
of the object db->master_sql.

NOTE: you will almost certainly need to use db->quote() to build your query strings;
this is used for quoting (rather, escaping) string literals sent in queries to the DB. String
quoting rules are, unfortunately, somewhat database-specific. Luckily, Sql.sql
automatically picks the version appropriate to your DBMS.

Remember that before you’re sure you got it right, you can always try it in Hilfe and see
pretty quickly if anything goes wrong.

15. How do I get started with GUI programming?

If you are not already familiar with the GTK toolkit, look for a GTK tutorial somewhere
around the GTK website. For a start, just get acquainted with the basic concepts of
GTK’s object and event model and have a look at one or two simple code examples in
C. GTK maps very nicely to Pike’s model of objects and callbacks, and you should find it
quite easy to redo those examples in Pike, or create your own. The basic idea is that you
use Pike’s own event loop, which is entered by returning a negative value from main().

12

http://www.gtk.org/

Sometime in the (hopefully) near future I expect to put here a few commented short
sample scripts. If you can contribute any of your own, please do.

16. How do I get started with OpenGL programming?

Check out this article on the Roxen Community site.

Advanced Pike programming
1. Does Pike have support for large integers (bignums)?

Yes, as large as will fit in your computer ;-) if it was compiled with support for the Gmp
library (Gnu Multiple Precision IIRC). This happens automatically if a suitable version of
this library is detected on your system at the time of building Pike. Any integer value that
is not less than 0x80000000 (on a 32-bit computer) gets automatically converted to a
bignum object.

Usage of large integers is mostly transparent to the user. Beware though that the builtin
pow() function returns float , even for integer arguments. Use Gmp.pow() instead, or
write something like int big = base->pow(exponent);

One might say that, if auto bignums are enabled in your Pike, integers actually become
bignum objects in disguise, but with optimization for the case when the int value fits in
a machine integer.

NB. bitwise operators also work with bignum ints.

Support for bignum rationals is not provided yet.

2. Is ‘type’ a datatype? What is it for?

Yes, in recent versions of Pike (7.2 for sure) it is a new basic type. Values of type type
are returned (at least) by the _typeof() function and the typeof() "special form".

The former allows you to test the actual, runtime type of an expression. Like any
function, _typeof() first evaluates its argument; typeof() , on the contrary, does not
-- it is not actually a function but a keyword that masquerades as a function, and it
returns the Pike interpreter’s current notion of the type of what the given expression
would evaluate to, as a value of type type . I.e. fed with the name of a function it will
return function , or possibly function(int : void) (or whatever) if such
information is available. Given a function call, it will return (whatever it knows about) the
type of the function’s return value, but the call will not be performed.

Note however, that type is not (currently) a keyword, i.e. you cannot declare a variable
as type foo; say. You can store type values in named constants or variables of type
mixed , though.

3. Does Pike allow for user-defined datatypes?

Well, obviously any class definition provides a user-defined (composite) datatype, and
this is a most useful feature; but in addition, new features of Pike’s type system (see
preceding question) allow you to play some more subtle tricks. A (perhaps silly) example

13

http://community.roxen.com/articles/005_opengl/
http://community.roxen.com/

would be (try this code):

constant boolean = typeof(0)|typeof(1);
boolean flag = 1;
int main(int argc, array(string) argv)
{
flag = (argc>1)?(int)argv[1]:flag;
write("Type of flag is %O\n", typeof(flag));
write("Value of flag is %O\n", flag);
return 0;
}

A related point is that (since Pike 7.2.26 approx.) you can use typedef and enum
declarations in Pike. As far as I can see, their usage and properties are quite alike those
of the corresponding C language keywords.

4. What about the ‘more advanced’ OO features?

Well, Pike has at least

multiple inheritance
data hiding
operator overloading
the option to have interface declarations separate from implementation
...

One relevant issue to keep in mind (from Henrik Grubbström):

Note that Pike’s typing system uses the "implements"/"looks-like" relation, and not
the "inherits"/"is-a" relation. The typing system when comparing objects of different
types, compares the types for the public (ie not static) symbols in the objects.

TBC

5. How do I extend Pike, or interface it to some C library?
6. Are there any other ways to modify Pike’s behavior?
7. Can I use mmap() and friends from Pike?

Not in Pike 7.2. An interface will be or already is provided in 7.3, the current
development version. Note that this can be quite handy: since Pike strings are shared
and cannot be altered "in place", changing a few bytes here and there in a string will
result in multiple copies being allocated at least temporarily, which may be an issue if
you’re dealing with a huge chunk of data.

8. Can Pike use unix sockets for IPC?

Not directly AFAIK. However, unix sockets are used in an indirect way by several
modules, when the underlying C libraries use them. Examples include Mysql
(connections to a locally running Mysql daemon) and GTK (X protocol connections to a
local display).

14

Pike’s module library
These are essentially all the modules you will find standard with Pike 7.2, except for a few I
have omitted -- the latter being either modules for interfacing with the various database
servers (Mysql, Oracle, etc.) which are normally accessed via Sql, those used internally and
not designed for end user access (I presume that this is indicated by a module name that
starts with an underscore), and several others that are obviously just stubs. My aim is to have
at least a few words of comments for each, regarding purpose, status and usefulness. Of
course, I do not mean to duplicate the reference documentation (where it exists), only to
provide a quick "hint sheet".

Readers are invited (read: encouraged) to send in short, self-contained sample scripts
illustrating usage of the individual modules. If appropriate, I will incorporate them into a small
repository of Pike code samples I plan to set up. To keep me out of trouble, please indicate
the origin of the code (if not written by you) and any possible usage restrictions (public
domain will be assumed by default).

1. ADT
2. Array
3. Cache
4. Calendar
5. CommonLog
6. Crypto
7. Debug
8. Filesystem
9. GDK

10. GL
11. GLU
12. GLUT
13. GTK
14. GDBM
15. Geography
16. Getopt
17. Gettext
18. Gmp
19. Gnome
20. Graphics
21. Gz
22. HTTPLoop
23. Image
24. Java
25. LR
26. Languages
27. Locale
28. MIME
29. Math
30. Mird
31. PDF

15

32. Parser
33. Perl
34. Pipe
35. Process
36. Protocols
37. Regexp
38. Remote
39. SANE
40. Sql
41. Ssleay
42. Standards
43. Stdio
44. String
45. Thread
46. Tools
47. Yabu
48. Yp
49. spider

Credits
In addition to information gathered from the Pike mailing list (thanks to everybody) and misc.
other sources, the following people have contributed corrections and/or additional
information:

Francesco Chemolli
Martin Nilsson
Henrik Grubbström
Sten Eriksson

Accessed: by 4483 since February 20th.

Robert J. Budzynski

Last modified: 2001-12-03

16

	The Unofficial Pike Programming Language FAQ
	Contents
	About this document
	General questions
	Basics of Pike programming
	Advanced Pike programming
	Pike's module library
	Credits

